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ABSTRACT 

Automatic control system has played a crucial role in the development of engineering and science and it has 

become an important and integral part of modern manufacturing and industrial processes. To get from a concrete controlled 

physical system there are fewsteps to be followed. First, a mathematical model of the physical system is made depending 

on the existing knowledge of classical physics and this mathematical model can take many forms. The second step in a 

control system design problem is to decide which desirable properties we want the physical system to satisfy. Very often, 

these properties can be formulated mathematically by requiring the mathematical model to have certain qualitative or 

quantitative mathematical properties. Together, these properties form the design specifications. The third, very crucial, step 

is to design, on the basis of the mathematical model of the physical system, and the list of design specifications, a 

mathematical model of the physical controller device. The problem of getting from a model and a list of design 

specifications to a model of a controller is called a control synthesis problem. In this paper, a state-space model has been 

derived from a type one transfer function plant model. Then the plant’s dynamic characteristics have been analyzed and 

simulated. After that a state feedback controller using the LQR method and finally a rigorous simulation analysis has been 

done with the designed LQR system with non-zero initial state with zero external inputs. 
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INTRODUCTION 

Control system is a useful branch of the engineering education and research and people of control engineering are 

related with the understanding and controlling segments of their environment, which is often called system. This control 

system provides useful economic products for society. There are many applications of control engineering such as traffic 

control systems, chemical processes, hard disk drive system, and robotic systems, and the current challenge of the present 

control engineers is the modeling and control of these complex systems. Control engineering is composed of the 

foundations of linear system, Signal processing, circuits and systems and it further integrates this engineering concepts 

with the basic modeling of mechanical engineering field and applications of control engineering are spreaded to many 

engineering fields. Therefore control engineering is not limited to any engineering discipline but is important and 

applicable to all sorts of engineering filed like aeronautical, chemical, mechanical, environmental, civil, and electrical 

engineering. 

The linear quadratic regulator problem, which is commonly abbreviated as LQR, plays an important role in many 

control design methods (Wilson 1996; Zadeh 1963; Ogata 2002). Quadratic optimal control is not only a powerful design 

method, but also in many respects it is the fundamental of many systematic control design procedures for linear multiple-

input, multiple output (MIMO)systems (Leung 1993; Douglas 1991; Jones 1979. In contrast with the pole-placement 

method, the theory of optimal control is concerned with operating a dynamic system at minimum cost. If the system 
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dynamics are described by a set of linear differential equations (Datko 1993) which is known as state-space representation 

and the cost is described by a quadratic functional then it is called the LQR problem. LQR gives infinite gain margin and 

sufficient Phase margin which is more than 60 degree; therefore LQR ensures the system stability better than any other 

control design The LQR is an important part of the solution to the LQG problem which is the classical state-space design 

for disturbance and noise rejection.  

Plant Model 

A block diagram of the transfer function model of the plant has been given as follows 
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Here insert the value of ‘a’ in the state space representation, according to the given data: 

 a = parameter of interest = 3.8355 

STATE-SPACE MODEL AND ANALYSIS OF DYNAMIC CHARACTER ISTICS OF THE PLANT 

Sate-Space Model 

As we will do state-feedback control system design, it is very important to get the state space model of the given 

plant. From the state-space model of the system, it is very easy to identify the dynamic behavior of the plant and whether 

the system is observable and controllable by forming and checking the controllability and observability matrices. From the 

given open loop plant system, first we find the state variables needed to define the states and then the complete state space 

of the system. So the given system is expressed in Laplace domain first and it has been converted into time domain and 

therefore state-space model has been defined by rearranging. The given transfer function block diagram model of the plant 

as: 

 

Figure 1: Block Diagram of the Plant 

Y(s)=
��[D(s)+ 

��������.���U(s)] 

Now defining as Y(s)= X1(s) and 
��������.��� U(s)= X2(s) 

So now we have, X1(s) = 
��[D(s)+X2(s)] 

Therefore, 	�
 (t)=2[	�(�)+d(t)]  

	�
 (t)=0. 	�(t)+2	�(�)+ 0. 	�(t)+ 0.u(t)+1. d(t)            (1) 

Where �(�) is disturbance signal. 

Also we can see that another state variable 
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               ��(�) = �(���������) �(�) 
• 	�� (t)+2 	�
 (t)+7.671	�(�)=u(t) 

Now let 	�(�) =
 	�(�) 
o 	�(�) +
 2	�
 (t)+7.671	�(�)=u(t) 

o 	�(�) =
  -2	�
 (t)-7.671	�(�)+u(t) 

So we have  

        	�
 (t)=0. 	�(�) + 1. 	�(�) 
o 	�
 (t)=0. 	�(t)+0. 	�(�) + 1. 	�(�)+ 0.u(t)+0. d(t)                                      (2) 

And 	�(�) =
 -7.671	�(�) -2	�(t)+u(t) 

o 	�(�) =
 0. 	�(�)-7.671	�(�) -2	�(t)+1.u(t)+ 0.d(t)                                                                 (3) 

From equation (1.1)-(1.3) we can find the complete state space model of the plant as : 

�	�
 (�)	�
 (�)	�(�)
 � = �0 2 00 0 10 −7.671 −2 �
	�(�)	�(�)	�(�)� 	+ �001 "(�)+ �200 d(t)                         (4) 

Also output equation y(t) can be written as: 

y(t)= 	�(�) = [1  0  0] �	�(�)	�(�)	�(�)� 
State-space Model,  x= Ax + Bu + Bw d 

   y=Cx +Du 

where A= �0 2 00 0 10 −7.671 −2 ,    B=  �001 ,  Bw = �200 ,  C= [1  0  0]  and D= 0 

Dynamic Characteristics of the Plant 

For analysis of dynamic characteristics of the plant, we here consider the transfer function between the output and 

the input u(t) by ignoring the disturbance signal 

So here, open-loop transfer function model 

G(s) = 
��(�������.���)U(s) 

And the state-space model (by ignoring the disturbance input) 

�	�
 (�)	�
 (�)	�(�)
 � = �0 2 00 0 10 −7.671 −2 �
	�(�)	�(�)	�(�)� 	+ �001 "(�) 
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y(t)= 	�(�) = [1  0  0] �	�(�)	�(�)	�(�)� 
Pole-Zero Map 

Here for this plant has one pole at the origin and two complex poles at -1 ± 2.3814i. So the system is marginally 

stable. 

 

Figure 2: Pole-Zero Map of the Plant 

Unit Step Response of the Plant 

By observing the step response of the system we can check the Bounded Input Bounded Output (BIBO) stability 

criteria for the system. 

 

Figure 3: Unit Step Response of the Plant 

Responses of the Individual States of the Plant 

By considering the initial states of the system as zero if we plot the states of the system then we can get the Figure 

4. From this figure it can be seen that, state variable x1 is showing the same response as y as output y=x1 and other two 

states become stable after some time. 
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Figure 4: Response of Each State of the Plant 

Controllability 

The controllability matrix of the given state space system can be found out from the following formula  

#$= [B AB%�B  …………………..%&'�B ] . 

We know that according to controllability theorem, for a system to be controllable the controllability matrix #$ 

has to be non-singular or full row rank.  

For our plant we have n=3, so we have n-1 =2, so the controllability matrix is: 

#$= [B  AB%�B ] 

The controllability matrix obtained using matlab code is: 

#$= �0 0 20 1 −21 −2 −3.671  
The rank of this matrix was found to be 3. The full row rank and we can also check the determinant of this matrix  

Det (#$)  = -2, which is non-zero. SoWc is non-singular. Therefore we can conclude that the Plant is controllable. 

Observability 

The observability matrix of the given state space system can be found out from the following formula 

#) = [++%+%� ………………… . +%&'�	].   

We know that according to observability theorem, for a system to be controllable the observability matrix #) has 

to be nonsingular or full column rank.  

For our plant we have n=3, so we have n-1 =2, so the observability matrix is:  

 #) = [++%+%�		]. 

The observability matrix obtained using matlab is: 

#/= �1 0 00 2 00 0 2  
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The rank of this matrix was found to be 3. The full column rank and we can also check the determinant of this 

matrix  

Det(#/)  = 4, which is non-zero. So Wo is non-singular.Therefore we can conclude that the Plant is observable. 

QUADRATIC OPTIMAL CONTROL 

State Feedback Controller Using Linear Quadratic Regulator (LQR) 

Given a plant specifications to be met by control design, the specifications are first cast into a specific index or 

cost function, and the control is sought to minimize the cost function. This cost function can be minimized by designing a 

state feedback controller for various values of the optimal control and cost minimizing parameters like Q and R. 

The system is described by the standard linear state space model as: 

	
(t) =Ax(t) + Bu(t), x(0)≠ 0, 

y(t) = Cx(t)  

The objective is to bring the non-zero initial state to zero. The cost function J is scalar and given as: 

0

1
( )

2
T TJ x Qx u Ru dt

∞

= +∫  

The Weighting matrices Q and R are symmetric and appear most often in the diagonal form. In addition, it is 

assumed that Q is semi-positive and R is positive. The optimal control has the form of state feedback: 

u Kx= −  

Where K is a constant matrix if A,B,C,Q and R are constant. 

The Algebraic Riccati Equation (ARE) is given as: 

%.P + PA + Q = PB0'�1.P,           where P is nxn symmetric matrix 

Using this Algebraic Ricatti Equation and searching for minimizing the cost function, it can be derived as : 

u=-0'�1.Px=-Kx 

Here using the above algorithm, we will design a state feedback controller using LQR method, simulate the 

designed system and show the state responses to non-zero initial state with zero external inputs. The LQR problem 

basically is the trade of where we give less weightage to the undesirable parameters and high weightage to the desired 

ones. Usually Q and R are selected to be diagonal so that specific state and control variables are penalized individually 

with higher weightings if their response is undesirable. In this case we will choose Q and R as follows, and use LQR 

method to get the feedback gain K, and make simulation under zero input situations.  

Q= �2 0 00 2 00 0 2 , and R=1, 

As it is a SISO system, we set the initial condition as, [ ]0 1 0 0
T

x = . As MATLAB has the library function 

named ‘lqr’ which implements the above LQR algorithm, therefore by using the ‘lqr’ command in MATLAB we get the 

feedback gain K. 
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Reponses of the Plant with State Feedback Controller Using LQR 

Using the MATLAB ‘lqr’ function we can extract the gain matrix K, solution of the Algebraic Ricatti Equation 

(ARE), P and the eigen values of the closed loop system. 

Initially we choose as, Q= �1 0 00 1 00 0 1 , and R=1, 

Then after simulation we have found the K,P and Eigen values λ . The response of the individual states are shown 

in Figure 5; output response of the closed loops system is shown in Figure 6 and control signal plot is shown in Figure 7. 

K = [1    0.6927   0.5269] 

P =�4.1819 2.5269 12.5269 3.7927 0.69271 0.6927 0.5269 , 
E =� −0.2571		−1.1349 + 2.548i−1.1349 − 	2.548ii  
As it can be seen clear from this result that eigen values are all have negative real parts, so the closed loop system 

becomes stable. And from the figures, it can be seen that output and all the states reaches to zero steady state value after 

some time. 

 

Figure 5: Response of Individual States of the System with LQR 

 

                Figure 6: Output Response of the System with LQR    Figure 7: Control Signal of the System with LQR 
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Reponses of the Plant for Changing Values of Q of LQR 

Here first we define 

Q = �8 9 99 8 99 9 8 , and R=1 

Now we change the values of the Q and see the effect on the each state variable now let us choose q as 

5,10,30,100 with the value of R=1, and see the plot of all the states variable, output response and control signal  for all 

these values together in a single graph. Figure 8 show the individual state response for different Q values, Figure 9 shows 

the output response for different Q values and Figure 10 shows the control signal plot for different Q values. 

 

Figure 8: Output Response for Different Q with R=1 

 

Figure 9: Individual Response of States for Different Q with R=1 

 

Figure 10: Control Signal for Different Q with R=1 
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From the above four figures we can analysis the results. From Figure 9 and Figure 8 it can be seen that, as the 

value of Q increases the all the states and the output reaches the steady state value zero much faster , that’s why for Q = 

�100 0 00 100 00 0 100  , the response is the fastest and for  Q = �5 0 00 5 00 0 5  the response is the slowest here. This is because we 

are increasing the weights for the states and making the weight constant for control signal. Therefore whatever the control 

signal the response is becoming faster. If we look at the control signal plot in Figure 10, we can see that control signal size 

is little increasing with the increase of the Q since we are not increasing the weight R.  

Reponses of the Plant for Changing Values of R of LQR 

For the last simulation the value of R was kept constant. Now we change the values of the R with keeping Q 

constant and see the effect. Now for Q = �8 9 99 8 99 9 8 , let us choose q=1 and the value of R as 1,5,20,50 and see the plot of 

all the states variable, output response and control signal for all these values together in a single graph. Figure 12 shows the 

individual state response for different Q values, Figure 11 shows the output response for different Q values and Figure 13 

shows the control signal plot for different Q values. 

 

Figure 11: Output Response for Different R and q=1 

 

Figure 12: Individual Response of States for Different R and q=1 
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Figure 13: Control Signal for Different R with q=1 

From the above four figures we can analysis the results. From Figure 11 and Figure 12 it can be seen that, as the 

value of R increases the all the states and the output reaches the steady state value zero much slowly, that’s why for R=50, 

the response is the slowest and for R=1, the response is the fastest here. This is because we are increasing the weight for 

the control signal, so the control effort becomes smaller; therefore it takes more time for the output/states to reach the 

steady-state. If we look at the control signal plot in Figure 10, we can see that control signal size is decreasing with the 

increase of the R.  

CONCLUSIONS 

From the specified plant model the state-space model has been derived and dynamic characteristics of the plant 

has been studied. It was found that the system is not BIBO stable and the controllability and observability of the system 

was defined and it was found that the system is both observable and controllable. For the optimal control of the system 

LQR controller was designed using state feedback and the various results were plotted for various values of Q and R. From 

the simulation analysis, the effects of the values of Q and R can be easily depicted from the response. The larger the 

elements of Q are, the larger are the elements of the gain matrix K, and the faster the state variables approach zero, while 

on the other hand, the larger the elements of R, the smaller the elements of K and the slower the response. So we can 

conclude that higher values of R make the system sluggish and higher the value of K, the state feedback is higher, the state 

variable goes to zero very fast. 
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