International Journal of Research in
Engineering & Technology (IJRET)
Vol. 1, Issue 2, July 2013, 177-186
© Impact Journals

DESIGN AND ANALYSIS OF A QUADRATIC OPTIMAL CONTROL SYSTEM FOR A
TYPE ONE PLANT MODEL

MD. ARIFUR RAHMAN ' & SYED MUZTUZA ALI 2
'Department of Electronics and Communication Enginee National University of Singapore, Singapore

School of Mechanical & Aerospace Engineering, Nagy@iechnological University, Singapore

ABSTRACT

Automatic control system has played a crucial ialehe development of engineering and science &ainhs
become an important and integral part of modernufaanturing and industrial processes. To get fratoracrete controlled
physical system there are fewsteps to be follow@dt, a mathematical model of the physical sysiemade depending
on the existing knowledge of classical physics #nsl mathematical model can take many forms. Therse step in a
control system design problem is to decide whicsirdele properties we want the physical systenatisfy. Very often,
these properties can be formulated mathematicallyelguiring the mathematical model to have certmialitative or
guantitative mathematical properties. Togethersahgroperties form the design specifications. Tivel tvery crucial, step
is to design, on the basis of the mathematical moélehe physical system, and the list of desigecsfcations, a
mathematical model of the physical controller devidhe problem of getting from a model and a listdesign
specifications to a model of a controller is caleedontrol synthesis problem. In this paper, sestpice model has been
derived from a type one transfer function plant slodhen the plant’s dynamic characteristics hagenbanalyzed and
simulated. After that a state feedback controlEng the LQR method and finally a rigorous simuaatanalysis has been

done with the designed LQR system with non-zerialrstate with zero external inputs.
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INTRODUCTION

Control system is a useful branch of the engingeeducation and research and people of controhergng are
related with the understanding and controlling seigis of their environment, which is often calledgtsyn. This control
system provides useful economic products for spciBiere are many applications of control engimegsuch as traffic
control systems, chemical processes, hard disle diygtem, and robotic systems, and the currenteciyg of the present
control engineers is the modeling and control afsth complex systems. Control engineering is contpadethe
foundations of linear system, Signal processingudis and systems and it further integrates thigireering concepts
with the basic modeling of mechanical engineeriddfand applications of control engineering areeaded to many
engineering fields. Therefore control engineerisgnbt limited to any engineering discipline butimportant and
applicable to all sorts of engineering filed likeranautical, chemical, mechanical, environmentail, and electrical

engineering.

The linear quadratic regulator problem, which isncoonly abbreviated as LQR, plays an important nolmany
control design methods (Wilson 1996; Zadeh 1963t©g002). Quadratic optimal control is not onlgaaverful design
method, but also in many respects it is the funddatef many systematic control design proceducedifiear multiple-
input, multiple output (MIMO)systems (Leung 1993pujlas 1991; Jones 1979. In contrast with the ptdeement

method, the theory of optimal control is concerneith operating a dynamic system at minimum costthé system
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dynamics are described by a set of linear difféa¢etjuations (Datko 1993) which is known as stytaee representation
and the cost is described by a quadratic functithel it is called the LQR problem. LQR gives iitingain margin and
sufficient Phase margin which is more than 60 degtieerefore LQR ensures the system stability bétien any other
control design The LQR is an important part of seéution to the LQG problem which is the classistate-space design

for disturbance and noise rejection.
Plant Model

A block diagram of the transfer function model lo€ {plant has been given as follows
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Here insert the value of ‘a’ in the state spaceasgntation, according to the given data:
a = parameter of interest = 3.8355

STATE-SPACE MODEL AND ANALYSIS OF DYNAMIC CHARACTER ISTICS OF THE PLANT
Sate-Space Model

As we will do state-feedback control system desigis, very important to get the state space mofi¢ghe given
plant. From the state-space model of the systeim viery easy to identify the dynamic behaviored plant and whether
the system is observable and controllable by fognaind checking the controllability and observapititatrices. From the
given open loop plant system, first we find theestzariables needed to define the states and leeodmplete state space
of the system. So the given system is expressédprace domain first and it has been converted time domain and
therefore state-space model has been defined nang@ng. The given transfer function block diagrarodel of the plant

as:
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Figure 1: Block Diagram of the Plant

Y(9)=IDE+ 552U

52+25+7.671

Now defining as Y(s)= XS) and———— U(s)= Xx(s)

$52+25+7.671
So now we have, Xs) :E[D(s)+X2(s)]
Therefore X, (t)=2[ x, (t)+d(t)]
%, (£)=0. x; (t)+2x, (t)+ 0. x, (t)+ 0.u(t)+1. d(t) Q)
Whered(t) is disturbance signal.

Also we can see that another state variable
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1
(s2+2as+3a)

Xy(s) = U(s)

% (B)+2 X, (£)+ 7.671x, (£) = U(t)
Now letx, (t) = x5(t)
0 x3(t) + 2%, (t)+7.671x, (£)=u(t)
0 x3(t) = -2%,(t)-7.671x, (£) +u(t)
So we have
%, (0)=0.%, () + 1. x3(t)
0 X%,()=0. x; (t)+0.x,(£) + 1.x5(t)+ O.Ut)+O0. d(t) )
ANd x5 (t) =-7.671x,(t) -2x5(t)+u(t)
0 x3(t) = 0.x,(t)-7.671x,(t) -2x5(t)+1.u(t)+ 0.d(t) (3)

From equation (1.1)-(1.3) we can find the compstéte space model of the plant as :

%] r0 2 0 1[x:(®) 0 2
%, (1) :[o 0 1] x| +[o|lu@®+ [Old(t) ()
xs(0)| o =7.671 —21|x;(0) 1 0

Also output equation y(t) can be written as:

x1(t)
y(t)= x,(6) =[1 0 O]fx,(t)
x3(t)

State-space Model, x= Ax+ Bu+ B, d

y=Cx+Du
0 2 0 0 2
where A=|0 0 1 ] B= [0] B\N=[O], C=[1 0 0] andD=0
0 -7.671 -2 1 0

Dynamic Characteristics of the Plant

For analysis of dynamic characteristics of the plee here consider the transfer function betwéeroutput and

the input u(t) by ignoring the disturbance signal

So here, open-loop transfer function model

2
s(s2+25+7.671)

G(s) = U(s)

And the state-space model (by ignoring the distucbanput)

%“@®] o 2 071 (®) 0
X,(t) :[o 0 1] x, )] + [o|u(®
x;(0)| o =7.671 —21|x;(0) 1
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x1(t)
y(t)= x,(6) =[1 0 O]fx,(t)
x3(t)

Pole-Zero Map

Here for this plant has one pole at the origin tmal complex poles at -1 + 2.3814i. So the systemasginally
stable.

Pole-Zero Map
T T

Imaginary Axis (seconds‘1)

1 1 1
-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Real Axis (seconds™)

Figure 2: Pole-Zero Map of the Plant
Unit Step Response of the Plant

By observing the step response of the system weloack the Bounded Input Bounded Output (BIBO) ifitgb

criteria for the system.

Output y of state space model when input is step signal
T T

Figure 3: Unit Step Response of the Plant
Responses of the Individual States of the Plant

By considering the initial states of the systerae® if we plot the states of the system then wegsd the Figure
4. From this figure it can be seen that, stateabédei x is showing the same response as y as outputayk other two

states become stable after some time.
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Figure 4: Response of Each State of the Plant
Controllability

The controllability matrix of the given state spagstem can be found out from the following formula

W,=[BABA?B ...coeeveevreen. AV1B] .

We know that according to controllability theorefor a system to be controllable the controllabilityatrix W,
has to be non-singular or full row rank.

For our plant we have n=3, so we have n-1 =2, s@timtrollability matrix is:

W.=[B ABA?B]
The controllability matrix obtained using matlaldeas:
0 0 2
w.=10 1 -2
1 -2 -3.671
The rank of this matrix was found to be 3. The fallv rank and we can also check the determinatttisimatrix

Det W) = -2, which is non-zero. SoMis non-singular. Therefore we can conclude thafRtant is controllable.
Observability

The observability matrix of the given state spagsteam can be found out from the following formula

W, = [CCACA? ... e eee e .CA™ 2T

We know that according to observability theorenn,d®system to be controllable the observabilityrirdt/, has
to be nonsingular or full column rank.

For our plant we have n=3, so we have n-1 =2, s@bservability matrix is:
W, = [CCACA* 1T
The observability matrix obtained using matlab is:

10 0
Wo:[ozol

0 0 2
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The rank of this matrix was found to be 3. The fdlumn rank and we can also check the determioftttis

matrix

Det(W,) = 4, which is non-zero. So s non-singular.Therefore we can conclude thaPtlaat is observable.

QUADRATIC OPTIMAL CONTROL
State Feedback Controller Using Linear Quadratic Rgulator (LQR)

Given a plant specifications to be met by contredign, the specifications are first cast into acejeindex or
cost function, and the control is sought to minienike cost function. This cost function can be mined by designing a

state feedback controller for various values ofdhmal control and cost minimizing parameters I and R.
The system is described by the standard lineaz ststce model as:
x(t) =AXx(t) + Bu(t), x(0} 0,

y(®) = Cx(1)

The objective is to bring the non-zero initial etéd zero. The cost function J is scalar and gagen
1 0
= E-[ (x"Qx +u' Ru)dt
0

The Weighting matrices Q and R are symmetric angeap most often in the diagonal form. In additidns

assumed that Q is semi-positive and R is posifite. optimal control has the form of state feedback:
u=-Kx
Where K is a constant matrix if A,B,C,Q and R anestant.
The Algebraic Riccati Equation (ARE) is given as:
ATP+ PA+ Q= PBR™1BTP, where P is nxn symmetric matrix
Using this Algebraic Ricatti Equation and searcHrgminimizing the cost function, it can be dexdvas :
u=-R™1BTPx=-Kx

Here using the above algorithm, we will design atestfeedback controller using LQR method, simuthee
designed system and show the state responses taenmrinitial state with zero external inputs. Th®R problem
basically is the trade of where we give less weightto the undesirable parameters and high weightaghe desired
ones. Usually Q and R are selected to be diaganéhat specific state and control variables areafiged individually
with higher weightings if their response is undasie. In this case we will choose Q and R as faloand use LQR

method to get the feedback gain K, and make simoalainder zero input situations.

q 0 O
Q:[OqO

0 0 ¢

,and R=1,

As itis a SISO system, we set the initial conditas, X, = [1 0 O]T . As MATLAB has the library function

named ‘Igr’ which implements the above LQR algarititherefore by using the ‘Igr command in MATLABevget the
feedback gain K.
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Reponses of the Plant with State Feedback Controtié&sing LQR

Using the MATLAB ‘Igr’ function we can extract thgain matrix K, solution of the Algebraic Ricatti &afion
(ARE), P and the eigen values of the closed locpesy.

1 00
Initially we choose as, QF 1 Ol, and R=1,
0 0 1

Then after simulation we have found the K,P anceRigalues. . The response of the individual states are shown

in Figure 5; output response of the closed loogsesy is shown in Figure 6 and control signal gathown in Figure 7.

K=[1 0.6927 0.5269]

T
1l

2.5269 3.7927 0.6927

[4.1819 2.5269 1 l
1 0.6927 0.5269

m
1l

—1.1349 + 2.548i

—0.2571 l
[ —1.1349 — 2.548ii

As it can be seen clear from this result that eiggdnes are all have negative real parts, so theedl loop system
becomes stable. And from the figures, it can b s$kat output and all the states reaches to zearlgtstate value after

some time.
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Figure 5: Response of Individual States of the Syaain with LQR
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Reponses of the Plant for Changing Values of Q of@R

Here first we define

q 0 0
Q :[0 q Ol, and R=1
0 0 g¢g
Now we change the values of the Q and see theteffiedhe each state variable now let us choose q as
5,10,30,100 with the value of R=1, and see the giaill the states variable, output response amdrabsignal for all
these values together in a single graph. Figudeo8vghe individual state response for different#ues, Figure 9 shows

the output response for different Q values andieig® shows the control signal plot for differenv&ues.
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Figure 8: Output Response for Different Q with R=1
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Figure 9: Individual Response of States for Differet Q with R=1
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From the above four figures we can analysis thalt®sFrom Figure 9 and Figure 8 it can be seeh #mthe

value of Q increases the all the states and theubutaches the steady state value zero much fagtat's why for Q =

100 O 0 5 0 0
[ 0 100 O ] , the response is the fastest and for FF 5 0] the response is the slowest here. This is becaeise
0 0 100 0 0 5

are increasing the weights for the states and rgakia weight constant for control signal. Therefateatever the control
signal the response is becoming faster. If we latathe control signal plot in Figure 10, we can the control signal size

is little increasing with the increase of the Qcsinve are not increasing the weight R.
Reponses of the Plant for Changing Values of R ofQR

For the last simulation the value of R was keptstamt. Now we change the values of the R with kep®

0 0

q
constant and see the effect. Now for CF: q Ol, let us choose g=1 and the value of R as 1,5,28n80see the plot of
0 0 ¢q

all the states variable, output response and daosityoal for all these values together in a singiEph. Figure 12 shows the
individual state response for different Q valuggufFe 11 shows the output response for differema@es and Figure 13
shows the control signal plot for different Q vaue

i

a8k

T
'
'
N AU N
]
'

gak--%-4---

[ S i N TR (P Ry P [ .

artprty

a1 ISR s A s S A

[ ) PSP U S WP JSpUY Y o WU RS NNRRSPE PRpR R

gz2f--cbreecmaa--

1

T S TP S R Y Iy

=
[ Sy
)
ml- - o
cal— - -
=
] Y
-
@
o
2
=1

Alateal

Alaie ak

| I T R

__1__

Figure 12: Individual Response of States for Diffeznt R and q=1
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Conrd sigral

Figure 13: Control Signal for Different R with g=1

From the above four figures we can analysis theltesFrom Figure 11 and Figure 12 it can be shkah &s the
value of R increases the all the states and thgubutaches the steady state value zero much sltvelys why for R=50,
the response is the slowest and for R=1, the respisnthe fastest here. This is because we areasiog the weight for
the control signal, so the control effort becomemlier; therefore it takes more time for the outgtates to reach the
steady-state. If we look at the control signal pfoFigure 10, we can see that control signal széecreasing with the

increase of the R.
CONCLUSIONS

From the specified plant model the state-space hiwae been derived and dynamic characteristichefptant
has been studied. It was found that the systenotiBBO stable and the controllability and obseiilgbof the system
was defined and it was found that the system if bbservable and controllable. For the optimal w@rdf the system
LQR controller was designed using state feedbadktla® various results were plotted for various galaf Q and R. From
the simulation analysis, the effects of the valoé€) and R can be easily depicted from the respofike larger the
elements of Q are, the larger are the elementiseo§ain matrix K, and the faster the state varmhblgproach zero, while
on the other hand, the larger the elements of & sthaller the elements of K and the slower thearesp. So we can
conclude that higher values of R make the systeggsh and higher the value of K, the state feeklimbigher, the state
variable goes to zero very fast.
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